Unit 1: Classification of signals and systems

Signal

Signal is one that carries information and is defined as a physical quantity that varies
with one or more independent variable.
Example: Music, speech

Classification of signals
Analog and Digital signal

Analog signal:

A signal that is defined for every instants of time is known as analog signal. Analog
signals are continuous in amplitude and continuous in time. It is denoted by x(t). It is also called
as Continuous time signal. Example for Continuous time signal is shown in Fig 1.1
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Fig 1.2 Digital Signal
Fig 1.1 Continuous time signal

Digital signal:
The signals that are discrete in time and quantized in amplitude is called digital signal
(Fig 1.2)

Continuous time and discrete time signal

Continuous time signal:

A signal that is defined for every instants of time is known as continuous time signal.
Continuous time signals are continuous in amplitude and continuous in time. It is denoted by
x(t) and shown in Fig 1.1

Discrete time signal:

A signal that is defined for discrete instants of time is known as discrete time signal.
Discrete time signals are continuous in amplitude and discrete in time. It is also obtained by
sampling a continuous time signal. It is denoted by x(n) and shown in Fig 1.3
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Fig 1.3 Discrete time signal

Even (symmetric) and Odd (Anti-symmetric) signal
Continuous domain:
Even signal:
A signal that exhibits symmetry with respect to t=0 is called even signal
Even signal satisfies the condition x(t) = x(—t)

0dd signal:

A signal that exhibits anti-symmetry with respect to t=0 is called odd signal
0dd signal satisfies the condition x(t) = —x(—t)
Even part x.(t) and Odd part xo(t) of continuous time signal x ¢ :

Even part x. t =1 [xat +x—t]

Odd partx,t=1 [x;—x—t]

Discrete domain:
Even signal:
A signal that exhibits symmetry with respect to n=0 is called even signal
Even signal satisfies the condition x(n) = x(—n).

0dd signal:

A signal that exhibits anti-symmetry with respect to n=0 is called odd signal Odd signal
satisfies the condition x(n) = —x(—n).
Even part x.(n) and Odd part xo(n) of discrete time signal x n :

Even partx.n =1 [xin +x —n |

Odd partx,n=1 [le—x —n |



Periodic and Aperiodic signal
Periodic signal:
A signal is said to periodic if it repeats again and again over a certain period of time.

Aperiodic signal:
A signal that does not repeat at a definite interval of time is called aperiodic signal.

Continuous domain:
A Continuous time signal is said to periodic if it satisfies the condition
xt =xt+T wlEereT is fundamental time period

If the above condition is not satisfied then the signal is said to be aperiodic
Fundamental time period T = 2Tnghere Q is fundamental angular frequency in rad/sec

Discrete domain:
A Discrete time signal is said to periodic if it satisfies the condition
xn =xn+N wlZereN is fundamental time period

If the above condition is not satisfied then the signal is said to be aperiodic
Fundamental time period N = 2mm_where w is fundamental angular frequency in rad/sec, m is
w

smallest positive integer that makes N as positive integer
Energy and Power signal

Energy signal:

The signal which has finite energy and zero average power is called energy signal. The
non periodic signals like exponential signals will have constant energy and so non periodic
signals are energy signals.

i.e, For energy signal, 0 < E<ocoand P =0

For Continuous time signals,

T
Energy E =lim |x t |*dt
T—oo -T

For Discrete time signals,

Energy E =lim x(n) 2
Noee n=—N
Power signal:

The signal which has finite average power and infinite energy is called power signal. The
periodic signals like sinusoidal complex exponential signals will have constant power and so
periodic signals are power signals.

i.e.,, For power signal, 0 < P < oo and E = o0

For Continuous time signals,



1 T 7
Average power P=1lim — |xt| dt
2T _r

T—-oo

For Discrete time signals,
1 N
Average power P = lim x(n) 2

N-w2N + 1 e

Deterministic and Random signals

Deterministic signal:

A signal is said to be deterministic if there is no uncertainity over the signal at any
instant of time i.e, its instantaneous value can be predicted. It can be represented by
mathematical equation.

Example: sinusoidal signal

Random signal (Non-Deterministic signal):

A signal is said to be random if there is uncertainity over the signal at any instant of time
i.e., its instantaneous value cannot be predicted. It cannot be represented by mathematical
equation.
Example: noise signal

Nusoidal SignalA Random Signal

Random signal

Deterministic signal

Causal and Non-causal signal

Continuous domain:
Causal signal:
A signal is said to be causal if it is defined for t=0.
i.e, xt =0 fort <0
Non-causal signal:
A signal is said to be non-causal, if it is defined for t< 0 or for both
t<Oandt=0
i.e, xt #0 fort <0

When a non-causal signal is defined only for t<0, it is called as anti-causal signal



Discrete domain:
Causal signal:
A signal is said to be causal, if it is defined for n=0.
i.e., xn =0 forn <0

Non-causal signal:
A signal is said to be non-causal, if it is defined for n< 0
orforbothn<0andn=0
i.e., xn #0 forn <0

When a non-causal signal is defined only for n<0, it is called as anti-causal signal

Basic(Elementary or Standard) continuous time signals

Step signal
Unit Step signal is defined as
fu (t)
ut=1fort=0 1
=0fort<0
0

Unit step signal

Ramp signal

Unit ramp signal is defined as

r(t)

rt =t fort =20
=0fort <0

Unit ramp signal

Parabolic signal
Unit Parabolic signal is defined as
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xt:Z—fOT'tZO 2
=0fort<0 05 -
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Unit Parabolic signal
Relation between Unit Step signal, Unit ramp signal and Unit Parabolic signal:

e Unit ramp signal is obtained by integrating unit step signal
i.e,utdt=1dt=t=r(t)

e Unti Parabolic signal is obtained by integrating unit ramp signal
le., rtdt= tdt=2t—2=p(t)

e Unit step signal is obtained by dicfiferentigting unit ramp signal
Le, rt= t=1=u(t)

dt dt
e Unit ramp signal is obtained by differentiating unit Parabolic signal
o d d 2 1
Lew pp =— = _ B _t—_pt
at ¥ d 27 2 ()
Unit Pulse signal is defined as
tno
1
[It=1fort<_ 1
2
= 0 elsewZlere
-1/2 12t
Unit Pulse signal
Impulse signal
Unit Impulse signal is defined as
Gt
1
6t=0fort+0

—00

Unit Impulse signal



Properties of Impulse

signal: Property 1:

Proof:

[ee]

x(t)6t dt=x 06 0 =x 0

—00

Property 2:

Proof:

[0¢]

[ee)

—00

[ee]

—00

x(t)8 t dt = x(0)

[+ d texistsonlyatt=0and § 0= 1]

Thus proved

x(t)S t — todt = x(to)

X(t)5t—todt=xto5to—to =xtgd0=xto

—00

Sinusoidal signal

wOt—toexistsonlyatt=toand50=1

Cosinusoidal signal is defined as
xt=Acos Qt+ @

Thus proved

Sinusoidal signal is defined as

xt=Asint+ &

where Q) = 2nf = Z“T and Q is angular frequency in rad/sec

fis frequency in cycles/sec or Hertz and

A is amplitude

T is time period in seconds
@ is phase angle in radians

Cosinusoidal signal

wlZlen¢p =0,x t = Acos (Ot

A
x(t) ¢
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Sinusoidal signal
wlZlen¢p =0,x t = Asin (Ot
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Cosinusoidal signal

Exponential signal
Real Exponential signal is defined as x t = Ae®

Sinusoidal signal

where A is amplitude

Depending on the value of ‘a’ we get dc signal or growing exponential signal or decaying

exponential signal

Ay(t) a=0 x(t) a>0

v

v

DC signal Exponentially

Complex exponential signal is defined as x t = Ae’*

growing signal

x(t) a<0

A t

v

Exponentially
decaying signal

where A is amplitude, s is complex variable and s = g + jQ
xt=AeSt= Ae = Aet /U = Aet (cosOt + jsinQt)
wlZleno = +ve, t[Zlenx t = Ae’ (cosQt + jsinQt),

wlRlerex, t = Ae® cosQtand x; t = Ae’ sinQlt
A x(t)
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Exponentially growing Cosinusoidal signal
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Exponentially growing sinusoidal signal

wlZleno = —ve,t[Zlenx t = Ae " (cosQt + jsint),
wlElerex, t = Ae % cosQtand x; t = Ae ? sinQt

x(t)

/\/\ AWANEER

A x(t)

AR

A
Y




Exponentially decaying Cosinusoidal signal Exponentially decaying sinusoidal signal

Basic(Elementary or Standard) Discrete time signals

Step signal

Unit Step signal is defined as
A u(n)

»
Ll
1 2 3

4 n

un=1forn=0
=0forn<0

Unit step signal

Unit Ramp signal
Unit Ramp signal is defined as
A0
s
rn =n forn=0 3
=0 forn <0 2
gl
0123 4 n
Unit Ramp signal
Pulse signal (Rectangular pulse function)
Pulse signal is defined as
x(n)
xn=Aformm<n<n A
= 0 elsew[Zlere | | | |
-1 0 1 g

Pulse signal

Unit Impulse signal
Unit Impulse signal is defined as



6n =1forn =0
6n =0forn #0

Unit Impulse signal

Sinusoidal signal
Cosinusoidal signal is defined as Sinusoidal signal is defined as
xn = Acos(wn) xn = Asin(wn)

where w = 2nf =21 m and w is frequency in radians/sample
N

m is smallest integer
fis frequency in cycles/sample, A is amplitude

Cosinusoidal signal Sinusoidal signal
x(n)
x(n)
A A

1

27654fF1 401 2 34 8
P12 £E78 910 n

Sinusoidal signal

-109-87 -E--I -%2 -

Cosinusoidal signal

Exponential signal
Real Exponential signal is definedas xn=a" forn >0

(n) axl
x(n
O=a<l X{ﬂ}
| 1,
n
01234 n
Decreasing exponential signal Increasing exponential signal

Complex Exponential signal is defined as x n = a™e/ (* ™™ = g™ [coswon + jsinwon]
wlZlerex, n = a"coswon and x; n = asinwon



x,(n)

X; (n)

Exponentially decreasing Cosinusoidal signal

x,(n)

O<a<l ‘“ O<a<l
|‘| |‘| |‘| 1

Exponentially decreasing sinusoidal signal

a1 x;(n)
axl

Exponentially growing Cosinusoidal signal

S|
|

Exponentially growing sinusoidal signal

Classification of System

Continuous time and Discrete time system
Linear and Non-Linear system

Static and Dynamic system

Time invariant and Time variant system
Causal and Non-Causal system

Stable and Unstable system

Continuous time and Discrete time system
Continuous time system:

Continuous time system operates on a continuous time signal (input or excitation) and
produces another continuous time signal (output or response) which is shown in Fig 1.84. The
signal x(t) is transformed by the system into signal y(t), this transformation can be expressed

as,



Responsey t =T xt
where x(t) is input signal, y(t) is output signal, and T denotes transformation

x(t) —» T —» y(t)

Fig 1.84 Representation of continuous time system
Discrete time system:
Discrete time system operates on a discrete time signal (input or excitation) and
produces another discrete time signal (output or response) which is shown in Fig 1.85.

The signal x(n) is transformed by the system into signal y(n), this transformation can be
expressed as,
Responsey n =T xn
where x(n) is input signal, y(n) is output signal, and T denotes transformation

x(n) —»{ T —» y(n)

Fig 1.85 Representation of discrete time system

Linear system and Non Linear system
Continuous time domain:
Linear system:

A system is said to be linear if it obeys superposition theorem. Superposition theorem
states that the response of a system to a weighted sum of the signals is equal to the
corresponding weighted sum of responses to each of the individual input signals.

Condition for Linearity:

T axit+ bx:t =ayit+ by(t)

wlZlerey: t andy, t aretl[Zleresponsesof x1t andx; t
respectively Non Linear system:

A system is said to be Non linear if it does not obeys superposition theorem.

i.e.,Taxit+ bx:t+# ayit+ by:(t)
where y; t and y. t are the responses of X1 t and x» t respectively

Discrete time domain:
Linear system:

A system is said to be linear if it obeys superposition theorem. Superposition theorem
states that the response of a system to a weighted sum of the signals is equal to the
corresponding weighted sum of responses to each of the individual input signals.

Condition for Linearity:

T axin + bx;n = ayin+ by:(n)

where y1 n and y; n are the responses of x; n and x; n respectively
Non Linear system:

A system is said to be Non linear if it does not obeys superposition theorem.

i.e.,Taxin+ bxan+ ayin+ by:(n)



where y1 n and y, n are the responses of x1 n and x2 n respectively

Static (Memoryless) and Dynamic (Memory) system
Continuous time domain:
Static system:
A system is said to be memoryless or static if the response of the system is due to
present input alone.
Example: y(t) = 2x(t)
y(t) =x*(t) + x(t)
Dynamic system:
A system is said to be memory or dynamic if the response of the system depends on
factors other than present input also.
Example: y(t) = 2x(t) + x(—t)
y(t) = x? (t) + x(2¢t)

Discrete time domain:
Static system:
A system is said to be memoryless or static if the response of the system is due to
present input alone.
Example: y(n) = x(n)
y(n) = x*(n) + 3x(n)
Dynamic system:
A system is said to be memory or dynamic if the response of the system depends on
factors other than present input also.
Example: y(n) = 2x(n) + x(—n)
y(n) =x*(1—n) + x(2n)

Time invariant (Shift invariant) and Time variant (Shift variant) system
Continuous time domain:
Time invariant system:
A system is said to time invariant if the relationship between the input and output does
not change with time.
Ifyt=Txt
Then T x t — to = y(t — to) should be satisfied for the system to be time invariant

Time variant system:

A system is said to time variant if the relationship between the input and output changes
with time.

Ifyt=Txt

Then T x t — to # y(t — to) should be satisfied for the system to be time variant

Discrete time domain:



Time invariant system:

A system is said to time invariant if the relationship between the input and output does
not change with time.

Ifyn=Txn

Then T x n — no = y(n — no) should be satisfied for the system to be time invariant
Time variant system:

A system is said to time variant if the relationship between the input and output changes
with time.

Ifyn=Txn

Then T x n — no # y(n — no) should be satisfied for the system to be time variant

Causal and Non-Causal system
Continuous time domain:
Causal system:

A system is said to be causal if the response of a system at any instant of time depends
only on the present input, past input and past output but does not depends upon the future
input and future output.

Example: y(t) = 3x(t) + x(t — 1)

A system is said to be causal if impulse response (t) is zero for negative values

oftie, t)=0fort<0
Non-Causal system:

A system is said to be Non-causal if the response of a system at any instant of time
depends on the future input and also on the present input, past input, past output.

Example: y(t) =x(t +2) + x(t — 1)

y(t) =x(—t) +x(t + 4)
A system is said to be non-causal if impulse response (t) is non-zero for negative values
oftie, E(t)*0fort<0

Discrete time domain:
Causal system:

A system is said to be causal if the response of a system at any instant of time depends
only on the present input, past input and past output but does not depends upon the future
input.

Example: y(n) = 3x(n) + x(n — 1)

A system is said to be causal if impulse response h(n) is zero for negative values of n
ie, mM)=0forn<0

Non-Causal system:
A system is said to be Non-causal if the response of a system at any instant of time
depends on the future input and also on the present input, past input, past output.
Example: y(n) =x(n+2) + x(n — 1)



yn)=x(—n)+x(n+4)
A system is said to be non-causal if impulse response (n) is non-zero for negative values
ofnie, EI(n)#0forn<0

Stable and Unstable system
Continuous time domain:
A system is said to be stable if and only if it satisfies the BIBO stability criterion.
BIBO stable condition:
e Every bounded input yields bounded output.
i.e, if 0<xt <o tlZlen 0<yt < ooshould be satisfied for the system to be stable
e Impulse response should be absolutely integrable
i.e.,0< Z(r) dt < o
If the BIBO stable condition is not satisfied, then the system is said to be unstable system
Discrete time domain:
A system is said to be stable if and only if it satisfies the BIBO stability criterion.
BIBO stable condition:
e Every bounded input yields bounded output.
e Impulse response should be absolutely summable

o]

ie.,0< = (k) <o

k=—o0

If the BIBO stable condition is not satisfied, then the system is said to be unstable system

Solved Problems

1. Draw r(t + 3), where r(t) is ramp signal
Solution:
rt=t;t=0

A r(t) A r(t+3)

v

v




2.Sketch x(6) =3r(t — 1)+ r(—t + 2)

A[t)

xt=3rt—1+r(—-t+2)

=0+4—-tfor—2<t<-1
=0+3—tfor—1<t<0
=0+2—-tfor0<t<1
=3t+1—-tforl<t<?2
=3+3t+0for2<t <3
=6+3t+0for3<t<4
and so on

I
[#2 n g =1 @ W - -

]

[y

N___
L
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3. Draw time reversal signal of unit step signal

Solution:
un=1n=0



u(n)

1
.. 4.3

n

123 4..

4. Check whether the following is periodic or not. If periodic, determine fundamental time

period

a. xt=2cos5t+1—sin4t
Here 01 =5,0,=4
2 2m 2T

4
E = E (It is rational number)

NA

Hence x(t) is periodic
T:5T1:4T2:2T[

=~ x(t) is periodic with period 27

b.xn =3 cos4nn + 2sinn
Here w1 =4m w, =7

N _2mm_ 2mm _m
e w; 4T 2
N1 =1 (taking m = 2)
2mtm 21m
N, =<7 =—w=2m

N, =2 (takingm=1)
N =LCM 1,2 =2

Hence x(n) -- x(n) is periodic with period 2

5. Determine whether the signals are energy or power signal
xt=e3tu(t)
T

T T
—ﬁt T
Energy E. =lim |x t |?dt = lim |e~3!|2dt = lim e~ dt = lim €
T—oo T—oo T—oo T-0w —6
-T 01 0 0
e—6T e—O _ < oo e ® — O, e_o =1

= lim -  =_
T-ow —6 —6 6



1 Tz . 1 T3 2 1 6
Power P =lim xt?dt=Ilim e 3t%dt = lim e °tdt
*® Tooo g T-oo 2T T 2T
-T 0 0
. -6t T 1 6T o0 _. 1 1
=lim _e_ = lim e__e_ = lim _ - =0 ve-w=0e0=1_=0
T-wo 2T —6 T-w 2T —6 —6 T-w 2T 6 co

0
Since energy value is finite and average power is zero, the given signal is an energy signal.

6. Determine whether the signals are energy or power signal

. nntm
xn= e] 4 +Z
N N mn T 2 N
EnergyE_ =lim x(n) 2=1lim eat2)  =lim 12=1lim2N+ 1=
—00 N—-oo —00 N—-oo
N n=—N n=—N N n=—N
N
velnt) = 1gnd1=2N+1
n=—N
1 N 1 N mn m?
Average power P_ = lim x(n) 2= lim ellat2)
®  Now2N 41 N-w2N + 1
n=—N n=—N
_ 1 N 1
lim 12 = lim 2N+1=1
=N-ow 2N + 1 N-w2N + 1

n=—N
Since energy value is infinite and average power is finite, the given signal is power signal
7. Determine whether the following systems are linear or not

O 4ty t = 22(8)
dt

Output due to weighteg[%/riltqf_iﬂ%‘ﬁ Ftayt+byt=axt+bre?..(1)
ray yy + )

at

Weighted sum of outputs:

For inputx: t: dy,

t
+tyt=x%t..(2)
1

dt
For inputx; t: dy, t
+tyt=x 2t..(3)
2
dylt dﬁyzt 2 2
2xa+3Xb=>a +atyt+b + bty t=ax t2+bx t..1.(4) 5

dt 1 dt



1 #4)
The given system is Non-Linear

8. Determine whether the following systems are linear or not
yn=xn-—2+x(n?
Output due to weighted sum of inputs:
ysin=axin— 2+ bxan— 2+ ax; n®+ bxz(n?)
Weighted sum of outputs:
For inputx;n:
yin =xi n—2 +x; n?
For inputx; n:
yan =x;n—2 + x2(n?)
ayin+by:n=axin— 2+ axin’>+ bxzn — 2 + bxa(n?)
v“ysnm =ayin +by:n

9. Determine whether the following systems are static or dynamic
yt=x2t+2xt
y 0=x 0+ 2x 0 = present inputs
y—1=x—-2+4 2x —1 = past and present inputs
y1=x2+4 2x 1= future and present inputs
Since output depends on past and future inputs the given system is dynamic system

10. Determine whether the following systems are static or dynamic
y(n) = sinx(n)
y 0 = sinx(0) = presentinput
y —1 = sinx(—1) = presentinput
y 1 = sinx(1) = presentinput
Since output depends on present input the given system is Staticsystem

11. Determine whether the following systems are time invariant or not
y(t) = x(t)sinwt
Output due to input delayed by T seconds
y(t, T) =x(t —T)sinwt
Output delayed by T seconds
yt—T)=x(t—T)sinw(t—T)
wyt,T#yt—T
The given system is time variant
12. Determine whether the following systems are time invariant or not
yn=x(—n+2)
Output due to input delayed by k seconds
ynk=x(—n+2-k)
Output delayed by k seconds
yn—k=x-(n—-k+2)=x(—n+k+2)
~ynk #yn—k
The given system is time variant



13. Determine whether the following systems are causal or not

dx(t)
yt= + 2x(t)
dt
The given equation is differential equation and the output depends on past input. Hence the

given system is Causal

14. Determine whether the following systems are causal or not
y(n) = sinx(n)
y 0 = sinx(0) = presentinput
y —1 = sinx(—1) = presentinput
y 1 = sinx(1) = presentinput
Since output depends on present input the given system is Causal system

15. Determine whether the following systems are stable or not
ht=e*u(t)

Condition for stability (1) dr< o
[ee] [oe] fo'e) e_4_[ . 1
(r) dr = e~ u(®) dr= e *dr =__% =2
—o ™ o

(1) dt < oo the given system is stable

—00

16. Determine whether the following systems are stable or not
yn=3x(n)
Letxn =6 n,yn =EZ(n)
= n =36(n)

Condition for stability (k) <o
k=—o0

(k) = 36(k) = 36(k) =3
k:—OO k=0 k=0

“O0k=0fork#0anddk=1fork=0

[oe]

(k) < oo the given system is stable

k=—o0



Unit 2: Analysis of continuous time signals

Fourier series analysis

The Fourier representation of signals can be used to perform frequency domain analysis of
signals in which we can study the various frequency components present in the signal, magnitude
and phase of various frequency components.

Conditions for existence of Fourier series:
The Fourier series exist only if the following Dirichlet’s conditions are satisfied.

e The signal x(t) must be single valued function.

e The signal x(t) must possess only a finite number of discontinuous in the period T.
e The signal must have a finite number of maxima and minima in the period T.

e x(t) must be absolutely integrable. i.e., fOTIx(t)Idt < oo

Types of Fourier series:
e Trigonometric Fourier series
o Exponential Fourier series
e Cosine Fourier series

Trigonometric Fourier series

The trigonometric form of Fourier series of a periodic signal, x(t) with period T is defined

as
x(t) = ao + Y an cosnQot + Y, bn sinnQot ... ... ... (D
n=1 n=1

Qo, an, bn = Fourier coefficients of trigonometric form of Fourier series

to+T

1
ao == [ x(t)dt
T
to
to+T
an = T [ x(t) cos nQot dt
to

to+T

2
b, = = [ x(t) sinnQot dt

to



Example 1 Find the trigonometric Fourier series for the periodic signal x(t) as shown in Figure
A< Ao
;

> |

|
- 5 3 TP h 5 5 % 9 "t - >
7 4 1 _01 1 3ot

< T—>
Solution:
T=3-(-1)=4and Qo= =n
T Z
Evaluation of a, 1 1
N Lo 3 R )
a =1, x(t)dt=4[f_11dt+f1—1dt] =, Tt = - (-1) -3 -1)]
1
=_[2-2]=0
4
Evaluation of a.
2 to+T 2 1 3
an :_T IO x( t) cos nflot dt =_4 [f_l cos nflot dt -|-1f1 (=1)cos n.()got dt]
1 sinnf t! sinn2 t3 1 sinnzt sinnZt
=_[—°] -[—°]]=_[_—»2] —-[—<"1]
2 nfo _4 nfy 2 n- " ns )
1 2 . m om . m T
= (_)[sinn_—(sinn_(-1))— (sinn _(3) —sinn )]
2m 2 1 2 2 2 .nmw nm
=] ] s s m. 1 [3sin  —sin(Znwt— )]
im sinn +smn2;sm322+sm7r_;2 nm 2 2
= [3sin_ —(—sinn )]= _[sinn |
nm 2 2 nm 2
Evaluation of b,
2 to+T 2 1 3
b, =; o x(t) sinnfot dt = Z [f_lsin not dt + f1 — sinnNot dt]1
1 —cosnf2 t!? —cosnf) t3 1 -—cosnzt cosngt
=_M—_°] - °]]=_[[_=2] +[_=«"1]]
2 nfy 1 T[Tl.Q() 1 2 T[n7 - nE )
1 [—2( I (=1))+ (cosn (3) —cosn )]
2w @sn, —cosn _nm nmr 2 T2 =
= C[0% 7 (ch @nr 2Ty —cosm ] = ( ) =0
2 nr P 2 — Cosn;—cosn;
Trigonometric Fourier
series
x(t) = ao + Y an cosnot + Y b, sinnfot
=l 4 nA=1 w 4 nm s
=>. sin( )cosnf t=)  sin( )
nm ) 0 nr " cosn_t
nzlnn 2 - nm 2 2

Example 2 Obtain Fourier series of the following full wave rectified sine wave shown in figure



Solution:
x(t) = x(—t); - Givensignal is even signal,so bn = 0

2
T=1land Q= =12
The given signal is sbnusobdal signal, ~ x(t) = AsinQt

Here Q= = =m andA=1

T 2
~ x(t) = sinmt
Evaluation of ao
T 1
2 2 1 tl 2 T 2
a =2[x@®)dt=2[x(t)dt = lF2fsir17tt dtl'= 2 [— cosm 1?=— [cos —cos0]= _
0 T 1 | 1 T o T 2 w
0 0 Lo

N =

Evaluation of a,

T 1

4 Z 4_ Vi z
a = [x(t)cosnQ tdt= [sinmtcosn2nt dt =2 [[sin((1 + 2n)mt) + sin((1 — 2n)nt)] dt

1

nT 0 1
0 0 0
cos((1 + 2nm)mt) _ cos((l - 2n)7rt)]
=40 (t=2mm
0
2 cos((1+2n)x) cos((1—2n)x) 1 1
=_|- 2 — 2 + + ]
T 1+2 1-2 1+2 1-2n
2 1 N 1 2 1—2n+1+2n]_ 4
T ml42n 1-2n @ 1 — 4n? (1 — 4n?)

Trigonometric Fourier series

[00) [e0)

x(t) = ao + Y, an cos not + Y, b, sinnNot
n=1 o n=1
x(t) = Z L cosn2mnt
n(l — 4n?)
Exponential Fourier series

The exponential form of Fourier series of a periodic signal x(t) with period T is defined as
x(t) = 3 cpenot
n=—oo

The Fourier coefficient c,can be evaluated using the following formulae



T
2

1
cn = = [ x(t)e-inootqt

Solution:
T=1Q0=2n=2t =21
T T
Consider the equation of a straight line

Y—Vi X —X1 (9)

Y2 —Y1 _Xz — X1
Consider one period of the given signal Fig 2.26 as shown in Fig 2.27Consider

points P,Q as shown in fig 2.27
Coordinates of point P = [0,0]
Coordinates of point Q = [1,1]
On substituting the coordinates of points P and Q in eq (9)
x(t)—0 t—0
-0 -1-0° x(t) =t
[“x=ty=x()]

Evaluation of ¢o
1 T 1 1 tz 1 1
co =7,f0 x(t)dt = Ifo(t)dt =[5 0= 5

Evaluation of ¢,
. 1 .

—jn2nt 1 ,—jn2mt

e Jnim e Jnemt g

1 [T , 1.t
Cn =7,f x(t)e-fnﬂotdt=_1f temmtdt = [t ord — [ —n2e
0 0 jn2m”
e—in2m e—n2mt 1 e inz ejnim 1
= +0+ [ = + —
—jn2m [—jz(n2n)2]0 ) Ton T nan? T nZan?
_J 1 1
m2m ¥ 240 T nZan? T n2n
N
j " n2m
c =", c _J, c _J, c __J c __J , c __J
1 2m 2 4m 3 6m -1 2r 2 —Ar -3 —6r
Exponential Fourier
series X(®) = 3 cnemmt

n=—oo



ej67[t + ...

cx() =4 — J p—jbmt _ J p—jdmt _ J o—j2mt 1 jej 2mt _|_j o4t 4 J
6 In m T2t @ 6
E+ ] [ ]zm _ e—jzm] +L[ej4rct _ e—j4rct] _|_]_[ej6nt _ e—j61rt] + ...
2 2m 4T 6m
1 1 e}27‘ct — e—]27‘ct 1 ej4mt _ p—jémt 1 efbmt _ p—jout
—_ - — L L
ooy D ooy 1+ Eeng
% ( ) 1 2z 1 L
== —) sin2nt — —sin4nt — —sin é6mt
2 1 1 21 1 3 1
= P sin 2wt + 25m47rt + 3sm6nt + -
Cosine Fourier series

Cosine representation of x(t) is

[e¢]

x(t) = Ao + X Ancos (not + 6,)

n=1

Where Ay is dc component, 4, is harmonic amplitude or spectral amplitude and 6, is phase

coefficient or phase angle or spectral angle

Example 4 Determine the cosine Fourier series of the signal shown in Figure

x(t

1
£ T/\ N,
-2n - 1 m 2n 3n

»

Solution:
The signal shown in is periodic with period T = 2m and 0 = 2;_= 1
0 T
The given signal is smEsmdaZl signal, ~ x(t) = AsinQt
Here Q= =1 A=1
T 2mn
~ x(t) = sint
Evaluation of a,
1 T 1 = 1 [ I 1 1

= — — ; — —*t=cost! _ —r_ - —

ao—TfO x(t)dt_znfo smtdt—zn 0 _Zn[ cost + cos 0] 271[2]

Evaluation of a,

U=



2 T

O 2 " L IR N PR
an fxt cosn.()otdt—z J, sint cosntdt = nfo sinl+nt+sinl-—nt dt
_ 1 cos(1+n)t cos(l—n)t]
2T (1+n) (1—7'1) 0 1
_i cos(1+n)n_cos(1—n)n+ 1 4 ]
21 (1+n) (1-n) 1+n 1-n
Cdd e oA 1 1 1 1
forn =odd:a =5t oy Tt Tt 1Al =0
11 1 1 1t 2 2y
forn =even :a =l o+ S+ YT, 7T n 1-n
11-n+1+n 2
:E[ 1 —n? ]:n(l—nz)
0 forn=odd
o Qp = 2
@ {n(l _n?) forn = even
Evaluation of b,
2 T 2 " 1 ”( () C )
b :;fo x(t) sinnfot dt = f sint sinnt dt = cos1-nt—cos1l+nt dt
1 sin(1—n)t sin(1+n)t = ZfT sinl—nr  sin(1+n)n
= — = — —0]1=0
Zn[ 1-n) (1+n) ]0 Zn[ (1-n) (1+n) ]

Evaluation of Fourier coefficients of Cosine Fourier series from Trigonometric Fourier series:

1
Ao = Qg = —
o T
2
=Va, 2 +b12 = W,forn = even
0, = —tan-1 " =0
an
Cosine Fourier
series o
x(t) = Ao + Y, An cos(nQot + 05)
n=1
1 > 2 1 2 2
x(t) =+ z=:1 t = _+ cos 2t + cos 4t + -+
- T (n= even) n}l nz) cos m mw(l-— 4-) (1 —16)
2 2 [1 1
=———cos2t———cos 4 ———l=cos 2t + —cos 4t + -
~ T 3,C0S t 157 €08 t+- == ngcos t+1scos t+- ]
Fourier transform

The Fourier representation of periodic signals has been extended to non-periodic signals by
letting the fundamental period T tend to infinity and this Fourier method of representing non-
periodic signals as a function of frequency is called Fourier transform.

Definition of Continuous time Fourier Transform



The Fourier transform (FT) of Continuous time signals is called Continuous Time Fourier

Transform
Let x(t) = Continuous time signal
X(jQ) = F{x()}

The Fourier transform of continuous time signal, x(t) is defined as,

X(Q) =F{x(®)}= [ x(t)e-iodt

Conditions for existence of Fourier transform
The Fourier transform x(t) exist if it satisfies the following Dirichlet condition

1. x(t) should be absolutely integrable

(ee]

ie , [ x(t)dt < oo

—00

2. x(t) should have a finite number of maxima and minima with in any finite interval.
3. x(t) should have a finite number of discontinuities with in any interval.

Definition of Inverse Fourier Transform
The inverse Fourier Transform of X(j{) is defined as,
x(t) = F{X(j0)} =
o [ X(jQ)eiotdQ

—00

[00]

Example 5 Find Fourier transform of impulse signal
Solution:
By definition of Fourier transform

[e0)

Fix()}=X({Q) = [ x(t)eJardt

—00
[0e]

S F8®] = [ 8(t)er dt

1 fort=20

F[8(t)] = 8(0)e~ 2©® = 1 [ Impulse signal 5(t) = {Ofor =0l

Example 6 Find Fourier transform of double sided exponential signal
Solution:
Double sided exponential signal is given by

Fle-alt] = {e_at =20
eat t<0
F[e—a|t|] _ f Oeat e—J 2tdr 4+ f ooe—at_e—j 2 gy — f 0 o=t De gy 4 f Ooe—(a+j o g
_ooz (e O ]0 0+ [e-(e o ]oo ) _wl 1 0_ at+jR+a—jn
I —eﬁﬁﬁo Ta—j0tarjnT T @+
a

sy



Example 7 Find Fourier transform of rectangular pulse function shown in figure
A x(t)

:\
72 7T
Solution: _T T
x()=n(t)=A4 ; <t<
2 2
T T T T
2 e Jjt 2 A T T 24 i, _ o717, 24 T
= —j0t d¢ = =__ _[p/2 o0 = — 27sin) _
Fr(0)] f_gAe dt =A== le == g = i
2
24,, . T sin(r T
=_TsinQ_ _ gy o 2ATsinc—
QT 0- 2
2
Example 8 Find inverse Fourier transform X(j 2) = §(2)
Solution:
* PG O] £ Fe(3(0) 1
) ) je 1 ) i@ [ ] 1 for2=0
xt = xjne do=__ [ (2 dn=""1 - 5%
~opl-e” 1€ T 2m 1 2m ={Oforﬂqto
F18(@D)] = —
21
Laplace transform

It is used to transform a time domain to complex frequency domain signal(s-domain)

Two Sided Laplace transform (or) Bilateral Laplace transform
Let x(t) be a continuous time signal defined for all values of t. Let X(S) be Laplace transform of

x(t).

0]

L{x(t)} = X(S) = [ x(t)e-stdt

—00

One sided Laplace transform (or) Unilateral Laplace transform
Let x(t) be a continuous time signal defined for t = 0 (ie If x(¢t) is causal) then,

(e]

L{x(©)} = X(S) = [ x(t)e-stdt
0

Inverse Laplace transform
The S-domain signal X(S) can be transformed to time domain signal x(t) by using inverse Laplace

transform.



The inverse Laplace transform of X(S) is defined as,
LX)} =x@® =~ T
2ri [ X(S)est ds

s=0—jQ

Existence of Laplace transform
The necessary and sufficient conditions for the existence of Laplace transform are
e x(t) should be continuous in the given closed interval
e x(t)e—ot must be absolutely intergrable
i.e.,X(S) exists only if f:lx(t)e—ﬁ |dt < oo

Example 9 Find unilateral Laplace transform for the following signals

i) x(t) = 8(¢)
() =0 © () st ~s(0) () 1fort=0
XSzfoxte dt=f06te dt=-e =1 S5t :{0 fort % 0

ii) x(t) = u(t)
w o S e=st © 1 1 fort=0

XS = fo x(He-stdt = fo u(t)e-stdt = fo le-stdt = [_S]0 = wu(t) = {0 fort <0
Example10  Find Laplace transform of x(t) = et u(t)
Solution:
X(S) = Llewtu(t)] = [ exte-st dt = [ e~t-rt dt = [ e/_(s_a)t] = 1
0 0 —s-a) o 7¢

Example 11  Determine initial value and final value of the following signal X(S) = 1
s+2Z

Solution:
Initial value 1 1
x(0) = Lt SX(§) = Lts = =0
500 5—00 S(S + 2) 00
Final value 1 1
x(o0) = Lt SX(S) = Lts =
5s—0 s-0 s(s+2) E
24+95+1

o _ s
Example12  Find inverse Laplace Transform of X(S) Find ROC for ) Re(s) > 0

2
ii) Re(s) < —4 iii) —2 > Re(s) > —4
Solution:



S2+9S5+1 S2+9S+1 A B C

S[S2+65+8] SE+4)(S+2) S (S+4) (S+2)
S24+954+1=A+4)(S+2)+BS(S+2)+CSS+4)

atSTO S=—19 S=-2
8 1 19 13 4

8
~X(S) =% + 8 4
s ST 0T+

Applying inverse Laplace transform 1
O O 19 13 _,,

- — u(t) + Ze u(t)

x t =8u t — 3 e
ROC
i) Re(s) >0
jQ . . .
ROC lies right side 11 poles
% gh()ofgg 13,
» sSx t :_ut —_e u(t)+_e u(t)
4 2 1 i 8 8 4

ii) Re(s) < —4

‘ 9 ROC lies left side of all ploées
13
. ax(®)=—_u(—t)+_e—at,,(_4 — _
T 2 o o 3 ) 3 u(-t) u(=t)
e—2L
4
iii) —2 > Re(s) > —4
A ROC lies left side of poles s=-2, s=0 and right side of
i poles=-4 1
O () 19wy BB

‘ ‘ - SMX Tt =—

=) 4

8

u —t



Unit 3: Linear Time Invariant-Continuous

LTI-CT (Linear Time Invariant-Continuous Time) Systems

When continuous time system satisfies the properties of linearity and time invariant
then it is called an LTI-CT (Linear Time Invariant-Continuous Time) System.

Impulse Response

When the input to a continuous time system is an unit impulse signal §(t) then the
output is called an impulse response of the system and it is denoted by h(t)

Impulse response, h(t) = H{5(t)}

Continuous time system
Impulse input

5(t) H h(t)
Fig 3.1

Convolution Integral

y(©) = foox(r)(t —r)dr

This is called convolution integral or simply convolution. The convolution of two signal x(t) and
h(t) can be represented as

y(®) = x(8)  B(t)

Systems connected in series/parallel(Block diagram representation)

System Realization
There are four types of system realization in continuous time linear time invariant
systems.
They are
e Directform Irealization
e Directform Il realization
e Cascade form realization

e Parallel form realization

Direct form I realization
It is the direct implementation of differential equation or transfer function describing the
system. It uses separate integrators for input and output variables. It provides direct relation
between time domain and s-domain equations. In general, this form requires 2N delay elements
(for both input and output signals) for a filter of order N. This form is practical for small filters.
Advantages:
e Simplicity
o Most straight forward realization



Disadvantages:
e More number of integrators are used

o Inefficientand impractical (numerically unstable) for complex design

Direct form Il realization

It is the direct implementation of differential equation or transfer function describing the
system. Instead of using separate integrators for integrating input and output variables
separately, an intermediate variable is integrated. It provides direct relation between time
domain and s-domain equations.

Advantages:
e Ituses minimum number of integrators

e Straightforward realization
Disadvantages:

o Itincreases the possibility of arithmetic overflow for filters of high Q or resonance

Cascade form

In cascade form realization the given transfer function is expressed as a product of several
transfer function and each of these transfer function is realized in direct form Il and then all those
realized structures are cascaded i.e., is connected in series.

Parallel form realization

The given transfer function is expressed into its partial fractions and each factor is
realized in direct form Il and all those realized structures are connected in parallel.

Solved Problems
Example 3.1: Find the convolution by graphical method
x(t):{l for OS'tSZ ; (t)={1 for OS.tS3
0 otBlerwise 0 otBerwise
Solution:

oo

Ingeneral x1(t) * x,(t) = [ x1(r) x5(t — 1) dr

—00
oo

Similarly B(t) * x(t) = [ B@) x(t — 1) dr
Replacing t by r in x(t)and A(t)
x(r) = {10f0r 0 S_r <2
otllerwise

1 for 0<r<3
0 otBlerwise

; B(r) ={



h(t) X(T) x(-1)
1 1 1
D ERe i 7 < 2 q <
Fig 3.21 Fig 3.22 Fig 3.23
Case(i)t<O0
Moxien Since overlap is absent between B(r) and x(—7r + t)
~y(6) =B *x(t) = 0
1
t-2 t P 3 "t
Fig 3.24

Case(i)0<t<?2

Mhoxto Since overlap is present
7 : t
1 cy@ =8 *x(t) = [BE) x(t—r)dr = [(DD) dr = [r]y=t
t-2 t 3 ¢ —o 0
Fig 3.25
Case(iii)2<t<3
‘%(t)x(t-r) Since overlap is present
7 ; t
1 // Ay =B« x(®) = [BE)xt—rdr= [(D1)dr =[], =2
otz 13 T x oo t-2
Fig 3.26
Case(iv)3 <t<5
Mooxen Since overlap is present ,
-
1| 7 Ly(®) =BE) +x(®) = [ BEO x(t =) dr = (D) dr =[],
Fa >
0 - 4 —o0 t—2
-2 3 t 1 —c_¢
Fig 3.27

Case(v)t > 5

Ah(t)x(t—t) Since overlap is absent
~y() =8t xx() =0

v

0 3 t-2 t T
Fig 3.28



Linear Time Invariant-Continuous Time systems

0 for t<o0
t for 0<t<2
~y() =080 xx(t) = 2 for 2<t<3
5—-t for3<t<5
10 for t=>5
Example 3.2: Find impulse response of the following equation
dzy(t)  dy(t)
_ 4+ 6y(t) = x(t
T ) =0
Solution:
dzy(t)  dy(t)
- —~+6y(t) = x(t
45—t 6Y(0) = x(0)

Assume all the initial conditions are zero
Applying Laplace transform of the given equation
S52Y(S) + 55Y(S) + 6Y(S) = X(S)

o Y(S)(S2 + 55 +6) = X(5)

Transfer function H(S) = _""=__ =~
X(©S)  (S2+55+6)
1

H(ES) =Y(S) = Zrsst6 (+ For lmpuls;’1 input ;(t) =6(t) =>X(S)=1)
H(S) = =
) S$+3)(S+2) S+3+5+2
1=A+2)+B(S+3)
at§ = -3 S=-2
A=-1 B=1
1 1
S+3 S+2

Applying Inverse Laplace transform
h(t) = —e-3tu(t) + e-2tu(t)

Example 3.3: Using Laplace transform solve differential equation

dzy(t)

—z Ty =x®
Where y' (0) = 2;y(0) = 1; input x(t) = Cos2t
Solution:

dzy(t)

—gz TY® =x®
Applying Laplace transform

52Y(S) = Sy(0) — y'(0) +Y(5) 5 X(S)
SY(S)—=S—-24+Y(S) =
S2+4

+S+2
4

2 Y(S)(S? + 1) =
S? +
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S 2
Y(S) = + +
) SZ+H(S2+1) (2+1)  (S2+1D
S AS+B  CS+D

Lt e+ & D)
S=(AS+ B)(S2 + 1) + (CS + D)(S + 4)
S = AS? + BS? + AS + B + CS* + DS? + 4CS + 4D
Comparing constant term

0=B+4D
B=—4D (7
Comparing coeff of S3
0=A+C
A=—C .. (8)
Comparing coeff of S2
0=B+D .(9)
Comparing coeff of S
1=A+4C ..(10)
Substitute eq (8) ineq (10) and eq (7) ineq (9)
1
C = —,D =0
3
Substitute value of Cand D in eq (8) and eq (7)
1
A = —_ B = 0
3 1
1
> _ —35  _3°
(52 +14)(52 +1) = (52 + 4) + ($2+1)
) 1
ve)=_3 +_35 , S 2
(52 + 4) . (s2+1) (S2+1)  (S2+1)
-3S 4
v =_ 3 3° 2

+ +
(s2+4) (S2+1) (52+41)
Taking Inverse Laplace transform

1 4
y(t) = _ECOSZt u(t) + 5cost u(t) + 2sint u(t)

Example 3.4: Find step response of the circuit shown in Fig 3.30
R
x(t t
O o L1 v(t)
Fig 3.30
Solution:
Applying KVL to the circuit shown in Fig 3.30
di(t) di(t)
x(t) = Ri(t) + L — t)=1L
dt y(®) dt

Applying Laplace transform
X(S) = RI(S) + LSI(S) Y(S) = LSI(S)
X(S) = [R + LS)I(S)



Linear Time Invariant-Continuous Time systems

X(S)
I(S) =——=
) [R + LS]
X(S)
Y(S) =LS———
) [R + LS]
1
For Step response x(t) = u(t) => X(S) = 5
1
L 1
Y(S) = LS—2—= -
R+E5 LS+R g +%
Applying Inverse Laplace transform
R
y(t) = e-L'u(t)
Example 3.5: Solve the differential equation using Fourier transform
dzy(t)  dy(t)
- ——~ 4+ 8y(t) = 2x(t)
az teTa
(i) Find the impulse response of the system
(ii) What is the response of the system if x(t) = te-2u(t)
Solution:
dzy(t)  dy(t)
T e+ By(D) = 2x(1)

dt dt

Applying Fourier transform
(DY) + 6jAY(jQ) + 8Y(jQ) = 2X(jQ)
YGQO[(G2)? + 6jQ + 8] = 2X(jQ)
Q) 2

Y
HGQ) = X(GQ) G2+ 6jQ+ 8]

() Impulse response x(t) = §(t) => X({Q) =1
2 B

~ H(Q) = Y(Q) = = +
U0 =Y0D = reorreare]  javd joT2
2 = A(jQ +2) + B(jQ + 4)
at jO = —4 jn=-2
A=-1 B=1
HGQ) = - +-
0+4 j0+2

Applying Inverse Fourier Transform
h(t) = —e—+u(t) + e-2tu(t)

(ii) x(t) = te—2tu(t)

1
X(GQ) =
Y(GQ) Go 3 2
X(GQ) [(2)?+6jQ+ 8]
() = 2 T 2
~Y(Q) = [(2)2+6j+8] (Qa+2)? (Q+4(a+2)3
A B c D

Tari Tz Gavor TGaroy
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atjQ = —4 jn=-2 ,
A= 2 GO+ 4) K . (Q+2)3
(Q + (A + 2)? joemd p=__ (G2+H({Q+2)°
1 2! d(jQ)?
A=—-_ .
4 1 j=-2
2
j =-=-2 j =-2
d 2 (Ja+2)3 b=_ 2 (jQ + 2)3
Y ga+a@a+2)y? GaHGa+2)* -
= d(].Q) D1 j=-2
jo=-2
1
c=-_
2

= Y(Q) = -4 + i + = + 1
jQ+4 ja+2 (o422 (Ga+2)3
Applying Inverse Fourier Transform

1 1 1 1
H=—_e4yu)+ - e ult) — —e2 tu(t) + — € 2t2u(t)
y(O) =~ e u® + g e u®) - 5 e % tu(®) +

Example 3.6: Find the direct form II structure of
553 —452+11S -2

H(S) = T 1
=4 E*2=5+5)
Solution:
583 —482+ 115 -2 _ 583 —-452+115-2
H(S) = e 52 5 51
: 4 11 2
553 —452+11S -2 _ st o3
H(S) = 552351 5 3 T
Sty g a5t 45 g
Direct form Il structure
Y(s)
X(s) w(s) 5 )
1/s
N _5/4 -4 N
=<
/ 1/$:| N
11
h—% >—
N N
1/8 2
Fig 3.39
Example 3.7: Realize the system with following differential equation in direct form |
DO 4300 4 5 PO 4 7y0) =280 4 0450 4 05x(0)

208



Linear Time Invariant-Continuous Time systems

Solution:

2
dd);(gt) + 3d Y(t) + 5dy(t) + 7y(t) — Zd x(t) + 04‘dx;:) + OS.X(t)

Taking Laplace transform
S3Y(S) + 352Y(S) + 55Y(S) + 7Y(S) = 252X(S) + 0.45X(S) + 0.5X(S)
Dividing both the side by $3
3 5 7 2 0.4 0.5
Y(S) +-Y(S) +=Y(S) + Y(S) ==X +—5XO) + 5
5 84 53 55 S7
Y(S) == X(S) + > X(S) + X(S) —Y(S) - Y(S) Y(S)

—=X(5)

Direct form | structure

X(S) W(s) Y(s)
] ©®
L] ] [ ]
,2 N B-3 ¢
1s 1k
zaly , O
— 0 P—<—
[ ] [
0.5 7
Fig 3.42
Example 3.8: Realize the system with transfer function in cascade form
4(52 4+ 4S +3)
H(S) =
S3+6.552+11S +4
Solution:
H(S 4(52 + 4S + 3) 4SS+ 1S +3) 4 S+1 S+3
( )_S3+6.552+115+4_ S+05E+2)(S+4) S+05S+2S+4
S+15+3
H{(S)H,(S)H3(S) = . .
1OHHS) = S5 572 5+ a
4 4 S+1 1+% S+3 1+3/
H1(5)=S+0.5=1_|_0.5/S H2(5)=S+2=1+2/ H3(S)=S+4=1+4/S
Yi(S) 4 YZ_(S)_1_|_1/ Y3_(S)_1_|_3/
W5 (S) S W3(S) S
Wy(s) 1 Ws(S) _
Xa(S)  1+2/ » X3(8)  1+%/ »
Xis)_> ] Ws(s) S xai . W) -
izl
-4 . lr
Fig 3.55 Fig 3.56




Cascade form:

\_. > —> re 4N
!
2 1

S

N Y(S)

— P
N

1/s F
Fig 3.57
Example 3.9: Realize the following system in parallel form
S(S+2)
H(S) =
SE+DES+3)(ES+4)
Solution:
HeS S(S+2) A B C
( )_(S+1)(S+3)(S+4)_S+1+S+3+S+4
SE+2)=AE+3)S+4)+BE+DES+4D)+CS+H1D)(S+3)
LetS= -1 LetS= -3 LetS= —4
—1(1) = A2)(3) —-3(-1) =B(=2)(1) —4(=2) =C(-3)(-1)
1 3 8
A=—_ B=—_ C=—
6 2 3
1 3 8
2 H(ES) =0 y——2 43

S+1 S+3 S+4
Parallel form structure
X(S) Y

1/S
-1 -1/6

)
L
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Unit 4: Analysis of Discrete Time Signals

Sampling of CT signals

Sampling theorem (or) uniform sampling theorem (or) Low pass sampling theorem

[t is one of useful theorem that applies to digital communication systems.

Sampling theorem states that “A band limited signal x(t) with X(in) = 0 for |[m| = mm can
be represented into and uniquely determined from its samples x(nT) if the sampling frequency
fs= 2fm where f, is the frequency component present in it”.

(i.e) for signal recovery, the sampling frequency must be at least twice the highest
frequency present in the signal.

Proof:
Sampling Operation:

81(t) is impulse train
&¢(t)

() - - Xs(t)=x(nT)
A~ i TER Nl
t Fig 4.2 :[]| |”|||]]

x(t) —> ®9xs<t)=x<nﬂ

8:(1)
Fig4.3
Analog signal x(t) is input signal as shown in Fig 4.1, §7(t) is the train of impulse shown in Fig 4.2
Sampled signal x(t) is the product of signal x(t) and impulse train §7(t) as shown in Fig 4.2
- xy(8) = %(0). 67(8)

1 .
we know 5T(t) => 6(t—nT) = = > efnwst

n=—o n=—o
[ee]

L x (0) =x(t).; S einwst

Fig 4.1 Fig 4.4

[ee]

n=—oo

Applying Fourier transform on both sides

X (@) =; Y Flx(t)emost]

n=-—oo
1
Xo(@) = 3 X(@—nwy)
n=—oo

2
wllere ws; = 2nf; = T



[o¢]

1 2nn
Xs(w) :_T Z X(a) — T)

n=-—oo

(or)
1

Xs(H=Ffs 2 XU —nfs) whlere f ==

n=-—oo
Where X(w) or X(f) is Spectrum of input signal.
Where X (w) or X(f) is Specturm of sampled signal.

Spectrum of continuous time signal x(t) with maximum frequency w,, is shown in Fig 4.5.

(eo))

-Cm 0 On I

Fig 4.5 Spectrum of x(t)

Fig 4.6 Spectrum of x,(t) when mg — my, > my,

0@y - -y, 0 \‘/ m @ O,

)
O, ey
Fig 4.8 Spectrum of x4(t) when mg — my, < m,,
From the plot of X (w) (Fig 4.6, Fig 4.7, Fig 4.8),
Formg > 2m,,
The spectral replicates have a larger separation between them known as guard band which

makes process of filtering much easier and effective. Even a non-ideal filter which does not have a
sharp cut off can also be used.
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For mg = 2m,,

There is no separation between the spectral replicates so no guard band exists and X(w)
can be obtained from X (w) by using only an ideal low pass filter (LPF) with sharp cutoft.
For my < 2m,,

The low frequency component in X (w) overlap on high frequency components of X(w) so
that there is presence of distortion and X (w) cannot be recovered from X;(w) by using any
filter. This distortion is called aliasing.

So we can conclude that the frequency spectrum of X (w) is not overlapped for
mg — My, = My, therefore the Original signal can be recovered from the sampled signal.
For mg — m,, < my,, the frequency spectrum will overlap and hence the original signal cannot be
recovered from the sampled signal.

=~ For signal recovery,
Wg — Wy = Wy, (I.€) Mg =2my,
(or)
fs22fm

i.e., Aliasing can be avoided if f; = 2f,,
Aliasing effect (or) fold over effect

It is defined as the phenomenon in which a high frequency component in the frequency
spectrum of signal takes identity of a lower frequency component in the spectrum of the sampled
signal.

When f; < %fm, (i.e) when signal is under sampled, the individual terms in equation
X (w)=_X* x(w—nw) getoverlap. This process of spectral overlap is called frequency
S T n=—oo S

folding effect.

Occurrence of aliasing
Aliasing Occurs if

i) The signal is not band-Limited to a finite range.
ii) The sampling rate is too low.

To Avoid Aliasing
i) x(t) should be strictly band limited.

[t can be ensured by using anti-aliasing filter before the sampler.
ii) fsshould be greater than 2f,,.

Nyquistrate
[t is the theoretical minimum sampling rate at which a signal can be sampled and still be

reconstructed from its samples without any distortion
Nyquistrate fy = 2fn.-Hz



Data Reconstruction or Interpolation

The process of obtaining analog signal x(t) from the sampled signal x4(t) is called data
reconstruction or interpolation.

oo

we know x4(t) = x(t). 67 (t) = x(t) Y 8(t —nT)

6(t —nT) exist only at t = nT

s xs(t) =x(nt) Y, §(t—nT)
n=—oo
The reconstruction filter, which is assumed to be linear and time invariant, has unit impulse
response [A(t).
The reconstruction filter, output y(t) is given by convolution of x4(t) and A(t).

2y =x,) x8() = [ x(nT) 3 §(r —nT). B(t —r)dr
=Y x(nT) [ 6(r —nT) B(t —r)dr

6(r —nT)exist only at r = nT
6(r—nT)=1latr =nT

~y() =Y x(nT) B(t —nT)
n=—oo
Ideal Reconstruction filter
The sampled signal x4(t) is passed through an ideal LPF (Fig 4.9) with bandwidth greater
than f,, and a pass band amplitude response of T, then the filter output is x(t).
Transfer function of ideal reconstruction filter is

H(f) =T ; |f] <05f

Ideal Reconstruction filter

H(f)
Xs(t)% T x(t)
'fs/z fs/z f
Fig 4.9
The impulse response of ideal reconstruction filter is
fs fs
fs
z 2 elnft 2 T j2n&t —jZth
A(t) = [ Tewtdf = [Teiznft df = T[jzm]  jrmEle 2 —e 2]
_fs _fs T2
2 Fonfs _ionfs
1 [eJZnZt_e }27':21: 1
= 5 = sinmfst = sinc wfst
fSTTt 2j ] T[fst f f
& B(t —nT) = sinc nfy(t —nT) .. .... (D

y(@) = ¥ x(nT)B(t —nT)

n=—oo
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Substitute equation (1) in above equation
(o]

[o¢]

~y() =Y x(nT) sincnf;(t —nT) = Y x(nT) sincn(;_n)

n=—oo n=—oo

1
[~ fs= f]

Example 4.1: Determine Nyquist rate and Nyquist interval corresponding to each of the following
signals
x(t) = cos 10007t + cos 30007t + sin 40007t
Wy, =4000r = 2nf, =4000r = f,, =2000Hz

Nyquist rate = 2f,,, = 4000 Hz
1 1
=——=0.25mS

N st int l=—
yquist interva 2f. 4000

Discrete time Fourier Transform

[ee]

F[x(n)] = X(eja)) = Z x(n)e—jam

n=—oo

4.2.2 Inverse Discrete Time Fourier Transform

/s
x(n) = F-1[X(e/*)] = o fX(eiw) eiondw , forn = —oo to oo
s
-
Example 4.9: Find Fourier transform of the following
i) x(n) = 8(n)
ii) x(n) = u(n)

iii) x(n) = aru(n)
Solution:
i) x(n) = 6(n)
o0 5(n) = {O, n#0
X(el) = F{5(m} = T 8(n)edon = e0 =1 1, =0
ii) x(n) = u(n)
X(ee)=Fum)} =3 u(n) ejon = Y e-jon u(n) = {0, n<0
n=—oo 1n=0 1; n 210
=14+eJo +e20 +-vo0=__ 1+x+x2+-=
1—e7o 1—x

iii) x(n) = aru(n)
It is Right handed exponential signal



[ee] o

X(eio) = Flaru(n)} = Y aru(n)e-jon =Y ate jon

n=-—oo n=0

=1+aeJ*+ (aej® 24 ..+00= 1
) 1—ae o
Example 4.11: Obtain DTFT of rectangular pulse
x(n)={A’ 0<n<L-1
0, otBerwise

Solution:

-1 1 — gjol N—-1 _

X(ere) =Z Aeven = Al — =0 2 am =
n=0 n=0
jwL —jwL —jwlL
(elT _— e]T) e]T 2] Sini jw (L-1) jw (L-1) Sinw_L
jw) — - - - ] = A [ 2 ] e~ — — 2
X)) =Al— 5= prETia L ooy
(ez2 —e 2)ez 2 2
Example 4.16: Find DTFT of x(n) = sin(n 6)u(n)
Solution:
x(n) = sin(nB)u(n)
i elfn — 70 1 i . B .
X(ei®) =Y sin(nB@)e-jon =3 (Z—j) eTjon = 7 (X el0—wn — 3 e=i(6Fwin)
n=0 n=0 n=0 n=0
1 1 1 1 1—e0O+0) — 1 4 £l(6-w)
~ 2 (1 —o-w) 1 — e—j(9+w)) = z_j( T—2e7@ cosO +e 5@
1 2je71» sin 0 e~j® sin O

:7]. 1— 2e-i» cos O + e—sz) T T—2Ze " cos® te o

44 Z-Transform

The Z-transform of discrete time signal x(n) is defined as

[e0)

Z[x()] =X(2) = 22 x(n)Z—

n=-—oo

4.4.2 Inverse Z-transform

The inverse Z-transform of X(Z) is defined as

1
x(n) =Z1X(2) = _ X(2) zr-1dZ
2njC

Example 4.21: Find Z-transform of the following
i) x(n) = §(n)

ii) x(n) = u(n)
iii) x(n) = —aru(—n — 1) and find ROC
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i) x(n) = 8(n) Lf .
orn =

8(n) = {Oforn =0

oo

Z[6(m)]=> 6(n)zn=7Z"0°=1

n=—oo

~Z[6(m)] =1
ii) x(n) = u(n)
Zlum)]= X un)zr=>Yzn=14+z1+2z2+23 1 141 4......
4 eeeeen = 1 + - + _2 Z_3
n=-—oo n=0 zZ Z
1 1 Z
11 1-z1 Z-1
z
The above series convergence if |Z-1| < 1 i.e ROCis |Z|] > 1
iii) x(n) = —aru(—n —1)
(o] (o] -1
X(Z)=Y x(n)z=Y —aru(-n— 1)z =— Y arnz™m
n=oo n=—oo n=-—oo

XZ)=—=-Yamrzr = —[aZ+ (a1Z2)? + (a2 + ] = —aZ[1 + aZ + (a1Z)? + -

n=1
-1 —a-1
R e T o A R
l-a z —-a zl-«a l1-a zZ—a
ROC: |a-1Z| < 1= |Z| < |a]
Im(z)
a
Re(z)
xample 4.25: Obtain Inverse Z-Transform of
1
X(2) = T 06Z- F 0,082 for ) |Z| >0.4 ii)|Z] <0.2 iii)0.2<|Z] <0.4
Solution:
1 A
X(Z) = =
1-0.6Z-14+0.08Z-2 Z?2 —0.6Z + 0.08
X(2) Z A B
= = +
Z (Z-02)(Z-04) Z—-02 Z-04
A= Z—-02 =— B = Z—04 =
Z 07 08" =1 Z 0T 0D N =2
X2 4 —Z 27

= = X(2) = +
Z Z—-02 Z-04 Z—-02 Z-04



Applying inverse Z-transform
x(n) = —(0.2)"u(n) + 2(0.4)"u(n)

ROC: |Z| > 0.4
ROC lies outside of all poles. So both the terms
are causal

s~ x(n) = —(0.2)"u(n) + 2(0.4)"u(n)

ROC:|Z| < 0.2
ROC lies inside of all poles. So both the terms are

non-causal
~x(n) = (0.2)"u(—n —1) — 2(0.4)"u(—n—1)

ROC:
05< ]zl <1
ROC lies inside of pole Z=0.4 and lies outside of
pole Z=0.2. So the term with pole Z=0.4 is non-
causal and the term with pole Z=0.2 is causal
&~ x(n) = —(0.2)"u(n) — 2(0.4)"u(-n—-1)

3
Example 4.29: Find the inverse Z transform of X(Z) = m using Cauchy residue method.
Solution:
Z3
Z+1DZ-1)
x(n) = Residue of X(Z) Zr-1at pole (Z = —1)
+ Residue of X(Z) Zn-1at pole (Z = 1) witl multiplicity 2

X(2) =

o nz+n d Z3(Z-1)? -
W= Dz - |Z:_1 Tz [(Z nz-n2 ? |Z:1
1 oy 2m+2)—-1_ 1 v 2n+3
=D 14 — (4 ) (Lyn-1u(n) + 7 u(n)
x(0)=1 x(1)=1 x(2) =2 x(3) =2

~x(n) ={1,1,2,2,...}
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UNIT 5: Linear Time Invariant —Discrete

Linear Time Invariant Discrete Time System (LTI-DT System)
When a discrete time system satisfies the properties of linearity and time invariance,
then it is called an LTI System.
Discrete time system
A discrete time system is a device that operates on a discrete time signal to produce
another discrete time signal called the output or response of the system.
Discrete time system
input output
xm)—3f |, y(n)

The input signal x(n) is transformed to output signal y(n) through the above system

Impulse Response
When the input to a discrete time system is a unit impulse §(n) then the output is called
an impulse response of the system and is denoted by h(n)
~Impulse response h(n) = H{5(n)}
6(n) - [H] - h(n)

Impulse response of interconnected systems

Parallel connections of discrete time systems (Distributive property)

Consider two LTI systems with impulse response hi(n) and hz(n) connected in parallel as
shown in Fig 5.1

hy(n)] Y2(")

stemn yin) ____ x(n) y(n)
x(n)—>|  Systeml ﬂ\k —— ——>h(n)=hi(n)+hy(n) —>

>h,(n)

y2(n)
System 2

Fig 5.1 Parallel connections of discrete time systems

Cascade connection of discrete time systems (Associative property)

x(n) y1(m)——y(m)___ >

@ — [ = k@) * k) Y
System1 System?2

Fig 5.2
Let us consider two systems with impulse hi(n) and h2(n) connected in cascade as shown in
Fig 5.2



Block diagram representation (System connected in series/parallel)

System Realization
There are four types of system realization in discrete time linear time invariant systems.
They are
e Direct form I realization
e Direct form Il realization
e (Cascade form realization
e Parallel form realization
Direct form I realization
It is the direct implementation of transfer function describing the system. It uses
separate unit delay element for input and output variables. It provides direct relation between
time domain and Z-domain equations. This form is practical for small filters.
Advantages:
e Simplicity
e Most straight forward realization
Disadvantages:
e More number of unit delay elements are used
e Inefficient and impractical for complex design

Consider a system with system function
Y(Z) _ bg+ b1Z71 + byZ72
H(Z) = & —1*%&17',1-‘1*%&22——2‘
Y(Z) + a1Z-Y(Z) + ayZ-2Y(Z) = boX(Z) + b1Z-X(Z) + byZ—2X(Z)
Direct form - [ realization of H(Z)

X@ b W@ .o
v
(2] [21"]
b1 N —ai |

rd

IZZI b

S

Fig 5.3 Direct form - [ realization

Direct form Il realization
It is the direct implementation of transfer function describing the system. Instead of

using separate unit delay elements for input and output variables separately, an intermediate
variable is unit delay element. It provides direct relation between time domain and z-domain
equations.
Advantages:

[t uses minimum number of unit delay element

Straight forward realization

Consider a system with system function
Y(Z) — bo + blZ—l + sz_z

H(Z) = X2y —]_—+—a1—Z—1—-|raZZ—_2 ......... (4)



Y@2) _ vz W@
X(2) W@ X2
1

Let

W(Z)
Where x¢zy = 1—'—“12 1—'—“22_2 ......... (5)
and Y@ =p +bz14bz2. .. (6)
W (Z) 0 1 2
From eq (5) we have
W(Z) = X(Z) — a1Z-W(Z) — aZ-2W(Z) w.. ... ... (7)
From eq (6) we have
Y(Z) = boW(Z) + b1Z-W(Z) + b Z2W(Z) ........ (8)
Realization of eq (7) Realization of eq (8)
X(2) GB W(Z) w@) g o 6;’ Y(2)
[2t1] 2]
-ax bl N
q I
11 VA -1
g Ge 1
Fig 5.4 Fig 5.5

Combined form of Fig 5.4 and Fig 5.5 gives direct form Il realization as shown in Fig 5.6

Z—l

o by g vz
?

-a1 b1 L

J
¥ Z
S8 o 2

Fig 5.6 Direct form II realization

Cascade form(Series form)

In cascade form realization the given transfer function is expressed as a product of
several transfer function and each of these transfer function is realized in direct form II and
then all those realized structures are cascaded i.e., connected in series.

Consider a system with the following system function
(bro+ braZ ™" + bieZ ) (bmo + b1 Z " + byaZ™?)

HZ) = A+ auZ '+ aZ (A + apZ' + ame 22 H1(2)H(2)
Where
(bko + biaZ ™ + bZ7?)
M@ =" AT ez F a2
(Bmo + byt Z™t + bypZ™?)
Hy(Z) =

A+ amZ1+ amZ72)



X(2) bio N brmo

e ﬁe
\

-ai b N “am1 bm1
J

~
y
Z1 ’ Z1 ’
Ak b . Ay Dm2

Fig 5.7 Cascade form realization

4
!

4
L

Realizing H1(Z) and H2(Z) in direct form II and the cascade form of the system function H(Z) is
shown in Fig 5.7

Parallel form realization
The given transfer function is expressed into its partial fractions and each factor is

realized in direct form II and all those realized structures are connected in parallel as shown in
Fig 5.8.

Consider a system with the following system function

N
C
1-P.Z-1

HZ)=c+ 3>
k=1
Where {P,} are poles of the system function

H(Z)=c+

Fig 5.8 Parallel form realization

Solved Problems

Example 5.1: Determine the frequency response and impulse response
1
y(n) — gy(n -D- gy(n —2) =x(n)
Solution:

) — %y(n _1- %y(n ~2) = x(w)
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Applying DTFT

1 , 1 , , .
Y(ef“’) . ge—]wy(e]w) _ ge—zjwy(e]w) =Xe ]w)

Y(ei®) = 1 _ edjw
Frequency response H(e/v) = ' Ll =pio— ~ po—tgi—
1-— g e — g e 6 6
H(e/v) o A B
- = — - = — + —
e/ e — _efo — 2 elo — 2 el 42

eio = A(elo + 1) + B (el — )
3 2

Atejo = —% Atejo =%
L =B-l-D Bt 1=AGHD A=
sejw 52 ejw
jwy =
H(&®) ej® — %+ ejw +§
Applying inverse DTFT
3 1n 2 1.n
h(n) = A (2—) u(n) + 3 (—5) u(n)
Example 5.2: Find response of system using DTFT
n n
h(n) = (%) u(n) ; x(n) = (23) u(n)
Solution:
n 3 n
h(n) = (%) u(m) 5 x(m) = () u)
Applying DTFT 1 "
H(ei®) = . jw) =
(e ) 1T1ﬁw 4 X(e} ) —]733 —
5€ 1—7e
Y(e/v) = H(e/®)X(eiv)
1 1 ejw ejo
Y jw) = . - = —3F.
O T T
Y(eiv) el A B
o (0 —D(ee—3) e —;“L oo =3
2 4
efo = A(efo —>) + B (efo — 1)
4 2
Atejo =% Atel'w=§l
1=AG-9 . A= $=BG-D. +B=3
Y (ej®) -2 3 _ —2e/®  3el®
eja) =ejw_1_+ejw_:i => Y(e]w)zejw_1_+ eja)_%
2 4 2
Applying IDTFT

y(n) = -2 (5]) “u(n) + 3 (% “un)
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Example 5.3: Find output response using Z-transform

3 1 3
y(n) _Ey(n -1+ _y(n —2) =2x(n)+ Ex(n -1)

Wherey(—-1) =0 y(-2)=1 ( )
xn = () u(n)

Solution:

n) _Ey(n— 1)+ ly(n— 2) =2x(n) + Ex(n -1)
=3 2 2

Taking Z-transform

1
Y(2) —_ [2-Y(2) + y(-1)] +§ [Z2=2Y(2) + Z71y(=1) + y(=2)]

3
2

= 2X (2) +;3 [Z-1X(2) + x(~1)]
2

V@) -2 @] + 2@ 1] = XD 2+ 22] vy =0,y(-2) =1
2 2 2
Since x(n)is causal signal x(—1) =0
_arn 1z
X = Q) um) = X@) = =
() 3_1+EZ_2 z " 3 _, "
B AT LA
371 1
v(2) = Zl (2+§Z) J 3
—Z(l_EZ—1+lz—2) 1—52—14_%2—2
1
7 27 4—2 _7°
Y(Z)=A—1(4 3 )_ 123 .
S —ZZ4- 7 —-Z+4-
4 2 2 2 2
Y(Z) _ Z 2 +3 Z) 1Z (222+3Z)—1Z(Z )
A (Z—l)(Z—l)(Z—E) z - 1)(Z—) (z-)(z 1)(Z—)
272 + Z—122+Z Z2+ Z
2 8
(Z—i)(Z—l)(Z— 5 (Z—l)(Z—l)(Z— D)
A B I

- -2 +(Z—1)+(z—i)
4 2

3 13 1 1 1 1
24 g — — _ 2 — (7 -_ — (7 -
- Z=AZ-1(z 2)+B(Z 4) “ 2)+(:(Z 4) Z -1

Atz=1.4=8
4 3s
AtZ=1:B=2
3
atz=".c=""
2 2
8 25 19
Y@z) _ 3 s 7
A 7—> 7—-1 z7-1
4 2
8 7 25 Z 19 7
Y@ =g —1+37-1 Z;-F
4 2
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Applying inverse Z transform
8(1)'1 25 ) 19(1)n
ym) =5 um) + ~ Q) um

Example 5.4: Convolve the following sequences using Tabulation method
x(n)ngorOSnS6
hn)=1for—2<n<2
1 2 3 4 5 6 1

xmy=¢, 1 % 3 ot 5 05 hm)=(1, 1, L, 1, 1
t 3 3 3 3 3 3 t

Tabulation method

oo

ym) =x(m)xh(n) = ¥ x()h(n—k) or y(m)=h@)+x(n)= 3 h(k)x(n—k)

= 3 Je=—o0
P ) WY 1’ P s U T T
3

3 3

x(n) = {

)

-+ _ O
wl

3 3 t

k —4 -3 -2 -1 0
x(k) 0

7 8 9

wluv| Ul
wl o QN

[y

N
wlw| W
(RIS IV

h(k)
h(~k)
h(-k-2)| 1 1
h(-k - 1) 1
h(~k)
h(-k+ 1)
h(—k + 2)
h(—k + 3)
h(—k + 4)
h(—k + 5)
h(—k + 6)
h(-k+7)
h(—k + 8)

I N =
I N T o Y SN Y
I N T i =Gy SN
I = = = Wk
= _ o WN
e
e
T
N R
e
=

y(=2) =01 = 0 .
y(=1) =(0)(1) + (;) (1 = .

y(0) = (0)(1) + (i) (1 + (i) M=1
y(1) = (0)(1) + (j) (1 + (i) (1 + (33) (1) =2
y(2) = (0)(1) + (j) (1) + (j) (1) + (i) (1) + (‘;) (1) = g



B=OD+OV+OM+GHw+C
YH=QW+OW+OW+OW+O) M =5

w=0w+On+rdbo+dn+da=2
T 3 3 3 7 3
&=0On+On+O+E
y(5) = (g) (g) (g) (5) 1) =6
YO =OW+OW+Sm=5

5 6 11
y(7)—<g)<1)+<§)<1>—?
y(8)=(§)(1):2

m=10, L, L2 25 20 e s g
3 t 3 3 3

Example 5.5: Obtain Cascade form realization
y(n) — %y(n -1 - %y(n —2)=x(n)+3x(n—1) + 2x(n — 2)
Solution:
y(n) — %y(n -1 - %y(n —2)=x(n)+3x(n—1) + 2x(n — 2)
Taking Z-transform
Y(Z) — %Z—ly(Z) — %Z‘Z Y(Z) = X(Z) +3Z2'X(Z) + 2Z1X(Z)
Y(Z) 1+3z1+2zt  (A+Z9HY(A+2Z71)

- T = H1(Z)H2(Z)
X@) 1--z71-2772 (1-1z-HA+127Y

aQ+z (1+22-1)
Hi(Z)=____4 ~ HyZ)=>__ ~
1-_2z1 aQ+_z
2 4
Z—l Z—l
1/2 1 -1/4 2
Fig 5.19 Direct form II structure of H1(Z) Fig 5.20 Direct form II structure of H,(Z)

Fig 5.21 Cascade form

Example 5.6: Obtain Parallel form realization
1 1
y(n) — Zy(n -1)— gy(n —2)=x(n)+3x(n—1) + 2x(n —2)

Solution:



yn) = %y(n =y= %y(n 2= 32X (=2)
Y(Z) 143271 +2Z2
X2 1171 -1z7-2

—16
g tyagpq | 222432141
8 4
27-2 + 421 — 16
=) =) D)
—Z-14+17
Y(Z) —Z-1+17 17—2-1
X(_Z=—16+1 . =16+ — .
— -1 — 72 I 1,9
) Z - (1-2Z2"H)(+,27Y
17-2-1 - A . B
Let 1 4 1 4 Tt 1
(A—Z YA+-Z ) 1-3Z 1+-Z
17-Z-1=A(1+ %Z‘l) + B(1 — ;Z‘l)
atZ-1=—-4 atZ-1=2
1 1
1744 = B(1- = (-4)) 17-2= 401+ (2)
10 7
#HZ) = ~16 + ———+ —1—
1—=Z7 1+-Z
2 4
» Y(Z 10 Y,(2) 7
Hy(Z) = = Hoy(Z) = =
! X1(2) 1 —%Z -1 2(2) X22) 1 +41LZ—1
Y(Z Y,(Z
U2 _ 0Ly = 10wh(2) Y2 _ vz = 7w
W1(2) W, (Z)
W1(2) 1 W, (Z) _ 1
X Z 1 =
) 1- 2 A4 14,2 !
1- 1-
W1(Z) = X1(Z) +EZ_1W1(Z) W, (Z) = X,(Z) — ZZ_1W2(Z)
XuZ)-s 10\“(2)
Fig 5.22 Direct form II structure of H1(Z) Fig 5.23 Direct form II structure of H2(Z)

Combining figures Fig 5.22 and Fig 5.23 we can form parallel form realization as shown in
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Fig 5.24
X(2) -16

Fig 5.24 Parallel form

Example 5.7: Convolve the following discrete time signals using graphical convolution
x(n) = h(n) = u(n)

Solution:
x(n)=un)=1Ln=0
h(n)=un)=1n=0

i Junt nnf

3 4 5 n 3

SAl———meo

n

y(m) =x(m) * h(n) = ¥ x(k)h(n — k)

k=—o0

whenn =0

y@ =M@ =1

whenn =1

yO) =DM+ @) =2

(-k+1)

LU

4 3210 1nd

whenn = 2
y2) =D +O@O+M@) =3

-k+2)

LT

3 2 -1 0 1 2n
~y(n) ={1,23,45,...}
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Example 5.8: Compute linear convolution.
x(n) ={2,2,0,1,1} h(n) ={1,2,3,4}

Solution:

2 4%y%/
3 6yyyy
4 8 8y%%




